GBS 724

LC-MS analysis of metabolites

Stephen Barnes, PhD

4-7117; sbarnes@uab.edu

Basis of Chromatography

- A moving (mobile) phase passes over an inert, stationary phase
 - The compounds differentially interact with the stationary phase and elute at different times

- The stationary phase can be paper, silica, coated silica and derivatized silica
- The *mobile phase* can be a gas or a liquid (organic solvent or water)

LC-MS

- The stationary phase
 - Silica
 - · surface can be made to be hydrophobic or hydrophilic
 - Open or pellicular
 - Having a pellicular support increases the rate of equilibrium (better performance), but lowers capacity
- Graphitized carbon (quite hydrophobic)
 - Stable to alkaline pH (unlike the alkyl silicas)
- The mobile phase is a liquid
 - Gradients of water-miscible organic solvents in water with volatile additives (0.1% formic acid or formic acid, 2-10 mM ammonium acetate or formate)
 - Trifluoroacetic acid is not used, nor are Tris or phosphate buffers

Chemistry of the column phases

- Reverse-phase
 - C₄, C₅, C₈, C₁₈, phenyl-hexyl-bonded phases
- Normal phase
 - Bare silica, cyano and amino-bonded phases
- Hydrophilic interaction chromatography
 - Bare silica, polyol-bonded phase
- Particle sizes
 - 5, 3, 2.5, 2.2 μm and 1.7 μm (for UPLC)

Important equation in chromatography

- Van Deemter
 - Height of theoretical plate (HETP, smaller the better)
 - HETP = A + B/ μ + C μ , where μ is the linear flow velocity
 - Where A is the eddy diffusion term due to non-ideal flow
 - B is diffusion that occurs in the longitudinal direction
 - C is the resistance to equilibration between the stationary and mobile phases

column 50 x 4.6 mm, acetonitrile - water (50:50, v/v), analyte toluene

The pressure equation

As the particle diameter is decreased by a factor of two, the backpressure goes up by a factor of four

Agilent Handbook of LC

Mobile phases

- Acidic media
 - Typically 0.1% formic acid
- Neutral media
 - 1-10 mM ammonium acetate or formate
- Alkaline media
 - $-\,$ 0.1% ammonium hydroxide (but not with $\rm C_4\text{-}C_{18}$ phases)
- Solvents (water-miscible)
 - Methanol, acetonitrile, isopropanol (for hydrophobic metabolites)

LC-MS

- The advantage of an effective LC-MS system would be that it would allow thermally unstable compounds, even large ones (such as proteins), to go into the gas phase from liquid solution and into the mass spectrometer
- Importantly, the ionization methods used are soft in nature and molecular ions [M+H]⁺ or [M-H]⁻ are easily formed (see later re other molecular ions)
- However, there are some compounds that cannot be ionized by LC-MS
 - polycyclic aromatic hydrocarbons, alkanes, waxes.

LC-MS interface

The key issue is how to transfer ions from the liquid phase into the gas phase while minimizing the transfer of solvent into the mass spectrometer

- For compounds that can be charged, electrospray ionization (ESI) is the principal method of choice
- Nebulization of the electrical charged droplets more effectively decreases the size of droplets
 - This allows all aqueous solvents to be processed by the interface
- Heating the spray further increases sensitivity
 - Not needed or used in nanoelectrospray ionization

Atmospheric chemical ionization (APCI)

- Suitable for compounds that are neutral
- A corona discharge needle ionizes air molecules that transfer their energy to the solvent and hence the solutes

Guide to LC-MS flow rates

Туре	Column ID	Flow rate	Solvent consumed*
Conventional	1.0-4.6 mm	0.050-1.00 ml/min	72-1440 ml
Capillary	0.3-1.0 mm	0.005-0.050 ml/min	7.2-72 ml
Nano	0.05-0.20 mm	100-1000 nl/min	0.144-1.44 ml

Sensitivity in LC-ESI-MS increases in proportion to the inverse of the flow rate. Therefore, there is value in going to lower flow rates – it also saves money on solvents.

Engineered microflow LC

Chromatography at flow rates of 5-50 µl/min using 0.3-0.5 mm ID columns

Very low dead volumes between the sample injection valve and the ESI interface despite the low flow rate

Enables short, reproducible gradients (1-2 min) or up to a 20 min gradient (for metabolomics) at 5 μl/min

ChipLC versus nanoLC

• A nanoLC column is so thin (75-200 μm i.d.) it has very little thermal capacity – this leads to variable retention times due to temperature fluctuations in the lab

A column etched in a block of silica can be engineered to have greater physical reproducibility and it has far greater thermal capacity. The CHIP can be placed in temperature-controlled chamber – we operate ours at 45°C – to recover more hydrophobic metabolites

Open tubular columns

- Provide the opportunity for high resolution chromatography
- Have to be hand-made, not commercially available
 - Opportunity to make specific stationary phases
- Most suited to discovery metabolomics until a standardized product becomes available

Detector types

Туре	Mass range (m/z)	Resolution	Accuracy (ppm)	Time for MSMS (msec)
Quadrupole	20-3000	2,000	50	1000
TOF	unlimited	30,000-40,000	2-3	50 or less
Orbi-trap*	50-6000	80,000-200,000	1-3	200+
FT-ICR*	100-1,500	Up to 1,000,000	<1	1000

^{*}These detectors depend on ion motion and therefore their performance declines as the acquisition time is shortened. Using a 80 msec MSMS acquisition, mass resolution on an Orbi-trap falls to 17,000. The TOF detector is the preferred one for untargeted analysis. The Orbi-trap and FT-ICR instruments are important for follow-up high mass accuracy experiments.

Detector combinations (targeted)

- Traditionally, a targeted method uses a combination of two quadrupole filters
 - Another quadrupole (between the other two) focuses the selected precursor ion so it collides with a jet of gas and forms fragments
 - Known as a reaction monitoring and triple quadrupole method
 - Recently, quadrupole-TOF combinations have been introduced pseudoMRM
- Many reaction (ion) monitoring steps can be observed per sec
 - Multiple reaction monitoring (MRM)

Primer for selecting ions for MRM

Peak width (sec)	Cycle time (sec)	Dwell time (msec)	Number of channels
5	0.5	20	25
10	1.0	20	50
5	0.5	10	50
10	1.0	10	100
5	0.5	5	100
10	1.0	5	200
5	0.5	2	250
10	1.0	2	500

The number of channels can be increased by using timed windows

Detector combinations (untargeted)

- Each detector can record a MS spectrum
 - Not sufficient even with the highest mass accuracy to uniquely identify the metabolite
 - 100s of metabolites can have the same empirical formula (and identical mass)
- Fragmentation of selected ions creates a MSMS spectrum to distinguish isobaric metabolites
 - In IDA analysis, molecular ions detected in a quick Hi-Res
 MS, are "selected" by the quadrupole filter one at a time
 - The ion is fragmented and a MSMS spectrum recorded
 - TOF instruments can record 20 MSMS spectra per second

Untargeted LC-MS

- The instrument of choice is a quadrupoleorthogonal TOF
 - We use a Sciex 5600 TripleTOF
- Collection of data
 - Duty cycle of 2 secs (to allow enough data points across a 20 sec wide chromatography peak)
 - 0-100 msec high accuracy MS in TOF analyzer (to identify the most intense ions)
 - 100 msec 2 sec
 - 100 msec MSMS spectra of up to 19 different peaks

Download Mzmine 2

- Go to http://mzmine.github.io/
- Download
- Unzip the file and move the folder into Applications
 - There are three starting methods
 - Linux startMZmine_Linux.sh
 - Mac startMZmine_MacOSX.command
 - Windows startMZmine_Windows.bat
 - Double click to start the program